
Verification of MPI Java Programs

using Software Model Checking

Waqas Ur Rehman, Muhammad Sohaib Ayub, Junaid Haroon Siddiqui
Department of Computer Science, LUMS School of Science and Engineering, Lahore, Pakistan

{waqas.rehman, 15030039, junaid.siddiqui}@lums.edu.pk

Abstract

Development of concurrent software requires the programmer to be
aware of non-determinism, data races, and deadlocks. MPI (mes-
sage passing interface) is a popular standard for writing message
oriented distributed applications. Some messages in MPI systems
can be processed by one of the many machines and in many possi-
ble orders. This non-determinism can affect the result of an MPI ap-
plication. The alternate results may or may not be correct. To verify
MPI applications, we need to check all these possible orderings and
use an application specific oracle to decide if these orderings give
correct output. MPJ Express is an open source Java implementation
of the MPI standard. We developed a Java based model of MPJ Ex-
press, where processes are modeled as threads, and which can run
unmodified MPI Java programs on a single system. This enabled us
to adapt the Java PathFinder explicit state software model checker
(JPF) using a custom listener to verify our model running real MPI
Java programs. We evaluated our approach using small examples
where model checking revealed message orders that would result
in incorrect system behavior.

Categories and Subject Descriptors D.2.4 [Software/Program

Verification]: Model Checking; D.1.3 [Concurrent Programming]:
Distributed Programming

Keywords Message Passing Interface in Java (MPJ), Model
Checking, Java PathFinder(JPF)

1. Introduction

Model checking (Clarke et al. 1999) is a powerful program anal-
ysis technique based on systematic exploration of nondeterminis-
tic choices in a program. Nondeterministic choices could be pro-
gram inputs, modeled behavior of an external system, thread inter-
leavings in a multithreaded program, or even message orders in a
distributed system. Earlier software model checkers required con-
verting the program into a a modeling language which was then
verified for certain properties (Clarke et al. 1999). Recent software
model checkers, such as the Java PathFinder (JPF) (Havelund and
Pressburger 2000), now provide the foundation of an increasingly
effective tool-set for systematic checking of programs written in
commonly used languages.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

PPoPP ’16 March 12-16, 2016, Barcelona, Spain
Copyright c� 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851141.2851192

Despite the progress, adapting the model checking techniques
for new domains remains a challenging problem in realizing its true
potential in increasing our ability to deploy more reliable software
systems. One such domain is MPI programs. Message Passing In-
terface (MPI) is a framework for the development of parallel and
distributed applications. It has been implemented in C, FORTRAN,
and Java. The Java implementation is called MPJ Express1. It is de-
ployed on different machines communicating through an underly-
ing communication channel. MPI programs often form the basis of
large distributed systems and their correctness is extremely critical.
However, testing of MPI programs is difficult because messages
can arrive in many possible orders and it is difficult to find if any of
these message orders does not give the desired outcome.

This paper presents a novel technique to adapt model check-
ing for unchanged MPI programs written in MPI Java. While prior
work addressed this problem requiring conversion of the MPI pro-
gram into modeling languages (van Galen 2011) or provided gen-
eral guidelines of how such a solution can be built (Gopalakrishnan
et al. 2011), we provide a concrete end to end implementation to
model check unchanged MPI Java Programs. Our choice of using
MPI Java enables us to adapt the existing Java PathFinder model
checker but the fundamental techniques are not specific to Java.

Our key insight is that an MPI Java proxy model that con-
verts the new source of non-determinism, i.e. message ordering,
into events that the existing JPF model checker can understand en-
ables model checking of unchanged MPI Java programs and also
enables effective partial order reduction (POR) which is built in
Java PathFinder. POR is the mechanism model checking uses to re-
duce the number of choices explored on the basis of equivalence
sets. To implement this, we introduced a custom listener for mes-
sage related events, a custom choice point to explore alternate mes-
sage orderings, and a custom MPJ Express proxy that translated
calls for the unchanged program.

2. Approach

MPJ Express framework is used to run MPI Java Programs in
cluster as well as multicore environment. Each MPJ process is
identified by a unique rank number, assigned by framework. MPJ
Express built-in functions Rank(), Size(), Recv() and Send() are
used to get rank of specific process, total number of processes
in communication, receiving a message and sending a message
respectively.

We are using Java PathFinder(JPF) as model checker. JPF has
limitation that it cannot model check programs executing on differ-
ent machines. To cater for this issue, we have developed a model
of MPJ Express which uses Java reflection for running unchanged
MPJ Program. For each MPJ process, we have created a thread and

1 http://mpj-express.org/

Table 1: Roles of threads

Thread Roles Level
Rank 0 Initiator, Terminator -
Rank 1 Ordinary, Intermediary 1
Rank 2 Ordinary -
Rank 3 Ordinary, Intermediary 0
Rank 4 Ordinary -

Table 2: Work distribution by Initiator thread (Rank 0)

Ordinary Worker Work Average
Rank 1 [1,2,3,4] 2.5
Rank 2 [5,6,7,8] 6.5
Rank 3 [9,10,11,12] 10.5
Rank 4 [13,14,15,16] 14.5

Table 3: Order of message reception at Rank 1 thread

Sr. No. Local Average Message Ordering Average
1. R1[2.5] R2[6.5], R3[12.5] 8.5
2. R1[2.5] R3[12.5], R2[6.5] 7

assigned a unique rank number to it, starting from 0. Each MPJ
process, modeled as thread, can access its rank number in the same
manner as in real environment by calling Rank(). We have also pro-
vided the support of Size() function which returns total number of
threads executing. To model communication channel, we are us-
ing a shared synchronized queue ensuring prevention of deadlock
or race condition. Threads enqueue and dequeue messages in the
queue to exhibit Send() and Recv() behaviors. Our MPJ Express
model supports all data types which are supported by MPJ Express.

In JPF, we have disabled all choice generators except Root and
Terminate choice generators. Terminate choice generator is respon-
sible for creating thread interleavings. Additional choice genera-
tors, of ThreadChoiceFromSet type, are created when needed. JPF
is extended with a listener and a set of classes (for logging) to per-
form model checking of MPJ programs. JPF starts execution with
Root choice generator with only one thread. As a result of termi-
nation of main thread, a terminate choice generator is created with
all runnable threads as choices. JPF starts execution with one of
the thread choice while listener observing the execution. Threads in
our model are either in blocked or unblocked state. Blocked threads
are those which are waiting for the message(s) in queue. Unblocked
threads are those which either never executed since program started
or unblocked after the creation a choice generator to executed all
the blocked threads. Partial order reduction is already integrated
in JPF and helping to prune state space reasonably in our model
checking process.

3. Evaluation

In this section, we are going to present an example of calculating
running average of first 16 integers. In this example, five threads
(modeled MPJ Express processes) are used with atleast one role.
The role might be Initiator, Intermediary, Ordinary or Termina-
tor. Initiator is responsible for distributing the work among other
threads. Ordinary workers are responsible for processing only. In-
termediary, as name suggests, is responsible for collecting results
from ordinary threads, consolidate them and forward results to ei-
ther higher level intermediaries or terminator. Terminator collects
the final result.

(a) Correct (b) Incorrect

Figure 1: Message Interleaving at Rank 1

As discussed above, our MPJ Express model assigns each thread
a unique rank number starting from 0. Rank 0 thread is playing the
role of Initiator and Terminator so it is responsible for distribution
of work and collection of final result. Rank 1 thread acting as or-
dinary worker as well as intermediary of level 1. It will perform
calculations for the work assigned and collect results from other
lower level intermediaries (Rank 3) and ordinary workers (Rank 2),
and forward consolidated result to terminator thread. Rank 3 thread
is also an intermediary with level 0 and responsible for collecting
result from Rank 4 thread. Thread with lower the level is less re-
sponsible for collecting results from other intermediaries/ordinary
workers. Rank 2 and Rank 4 processes are just ordinary workers.
They calculate the average of the numbers assigned to them and
forward result to Rank 1 and Rank 3 workers respectively. Table 1
summarizes the roles of each thread in our example.

Rank 0 thread distributes work according to Table 2 and waits
for the final result from Rank 1 for output. Now, each worker will
first calculate the average of task assigned to it and forward result to
respective intermediaries. Here it is important to consider the order
of messages being received at intermediary nodes. As mentioned
earlier, Rank 1 thread is responsible for receiving results from Rank
2 and Rank 3 threads. Now, there are two possibilities that Rank 1
will either receive message from Rank 2 then Rank 3 or vice versa.
Both these message orderings are shown in Figure 1a and Figure 1b
where labeled arrows show the order of messages sent/received.
Rank 2 and Rank 4 will calculate averages of numbers assigned
to them and forward messages to Rank 1 and Rank 3 respectively.
Rank 3 receives result from Rank 4 and consolidate it with locally
calculated average and forward result to Rank 1. Rank 1 collects
results from Rank 2 and Rank 3 processes and calculates the final
result in order to forward it to Rank 0. Results generated from both
orderings at Rank 1 will produce different final averages as shown
in Table 3. These orderings are due to the unpredictable behavior
of network. Message ordering in Figure 1a will produce average
8.5 which is correct whereas message orderings in Figure 1b will
produce 7 which is wrong result .

References

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press,
1999.

G. Gopalakrishnan, R. M. Kirby, S. Siegel, R. Thakur, W. Gropp, E. Lusk,
B. R. De Supinski, M. Schulz, and G. Bronevetsky. Formal Analysis
of MPI-based Parallel Programs. Communications of the ACM, 54(12):
82–91, 2011.

K. Havelund and T. Pressburger. Model Checking Java Programs Using
Java Pathfinder. International Journal on Software Tools for Technology

Transfer, 2(4):366–381, 2000.
R. van Galen. Towards Verification of MPJ-based Java Programs. 15th

Twente Student Conference on IT, 15, 2011.

